Solar System Science
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The Solar System Working Group

The solar system is

- A diverse environment that is a universe on its own!

- Our only accessible model for planetary system formation and evolution
- A model for fundamental physics

- Impossible to survey with robotic spacecraft

The team

Walt Harris, Britney Schmidt, Geronimo Villaneuva, Andy Rivkin, Dennis Bodewits, Noah Petro,
Silvia Protopapa, Alex Parker, Jeff Morgenthaler.
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Why LUVOIR for the Solar System?

1) The UV spectral range, particularly below 200 nm, is essential for characterizing planetary
upper atmospheres, elemental abundances, plasmas, and energetic phenomena (e.g. auroras,
airglow, dissociative recombination).

2) Remote probes lack important capabilities (high resolving power, polarimetry), and are too
infrequent or cannot reach most of the solar system.

3) Space based imaging with HST is deeper than ground based telescopes 4x its diameter.

4) Ground based NIR windows only partly sample the relevant spectral features from solar
system targets.

5) Wide field diffraction limited imaging is not currently possible from ground based
telescopes.
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The Magnificent 7

1) The lcy Frontier (TNOs, Centaurs, Dwarf Planets)
2) Asteroids (NEOs to Trojans)

3) Comets

4) The Sun-Planet Connection

5) Surfaces (Terrestrial planets to icy satellites)

6) Atmospheric Structure

7) Solar Companions (Planet 9)
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Ice Frontier (and asteroids)

HST has been the most sensitive facility for the discovery of KBOs. LUVIOR will maintain this

status and enable a true survey. 708

There are 6 areas of emphasis. ”
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1) Surface spectroscopy

2) Atmospheric characteristics §
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Ice Frontier (and asteroids)

Surface spectroscopy is currently limited to large dwarf planets

Pluto near-infrared spectrum
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Occultations probe thin
atmospheres, outgassing, and

identify rings
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Imaging implies significant variability in
surface composition (e.g. factor of 2 albedo).
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Ice Frontier (and asteroids)

Deep field imaging at the diffraction determine the KBO size
distribution down to ~1 km.

A LSST equivalent array at the diffraction limit would be 3x the
area of WF3 and could obtain equivalent depth (40 km diameter)
to the New Horizons search in ~10 s.

1 km detection is possible in 10 minutes.
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Ice Frontier (and asteroids)

Ultra-wide field (>10 arcminute diameter) could provide a survey of large areas of the Kuiper
Belt to different levels of completeness.

1) Full Belt to <50 km.
2) Survey of dwarf planets (~*1000 km).
3) Identification of sub-Saturn sized planets.
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Comets

Spacecraft encounters have not identified a ‘typical’ comet or asteroid.
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Comets

At the limits of high resolving power and field of view, LUVOIR will provide new insight into
the volatile mass budget, isotopic ratios, spin temperatures, and velocity distributions.
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Comets

Diffraction limited imaging from space has provided wide field access to icy and refractory
debris fields surrounding comets.
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Sun-Planet Connection

IRTF NSFCAM

29 Jun 1995 JOV|an Au rora

Energetic phenomena in planet environments is mainly driven by the

solar wind & EUV, ion-neutral pickup, and magnetospheric processes. RNV

Far UV line emissions are produced from neutral and ion ground
states. Variability on time scales from seconds to days is observed.

Ice giant auroral and magnetospheric processes are below the current
characterization limit.
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Sun-Planet Connection

Giant planet magnetospheres with large or active satellites produce complex structures that
interact at multiple points through the system. '
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Sun-Planet Connection

The heliopause is accessible by proxy from observations of resonance scattering from
interplanetary hydrogen.

High spectral resolution measures

-The Sun-LISM relative velocity vector

-The strength and orientation of the interstellar
magnetic field

-The characteristics of the upstream plasma
deceleration process

-The shape of the heliopause
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Surfaces:

LUVOIR enables long term monitoring of planet, satellite, and dwarf planet surfaces.
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Surfaces:

High spatial resolution monitoring can identify surface activity patterns and regions of high
temperature.
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Surfaces

In the outer solar system Cassini-quality images of the Titan fluid cycle will be obtained.
Monitoring of surface evolution on Pluto or Triton will be possible.

Sputnik Planum.
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Thick Atmospheres:

From LUVOIR it will be possible to monitor 3-dimensinoal global circulation patterns in
planetary atmospheres, tracing the evolution of weather with altitude and energy source.

Anticipated Characteristics

1) Diffraction limited imaging meeting or
exceeding Voyager

2) Spectroscopic characterization of
atmospheric compounds, chemical processes,
and isotopic ratios.
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Thick Atmospheres:

Bulk atmospheric structure is probed by different wavelengths, with UV sampling upper
atmospheric regions with the visible and NIR moving deeper.

MNASA/IRTF MNSFCAM IMAGES OF JUPITER
1994 July 12 (UT)

Vincent et al. 2000a
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Thick Atmospheres:

a. Nitrogen chemistry b. Mars atmosphere

Weather patterns can be traced out m m J photochemistry
to Neptune with LUVOIR. 1 V= c

Chemical pathways will be explored.

With sufficient resolving power,
winds and turbulence can be
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LUVOIR Technology Drivers for the Solar System:

Solar system studies have some required technical drivers (in addition to everything else).

1) Solar Exclusion Angle: Venus Elongation is 45-47 degrees. Mercury is 28 degrees. Comets
are active when closest to the Sun.

2) Moving Target Tracking: A LUVOIR Lagrange point mission will move 1 degree on the sky
per day, or about 1 arcsecond every 24 seconds. Inner solar system targets (NEOs, Asteroids,
Comets) can move up to 100x faster than this.

3) Large dynamic range in target brightness, including crowded fields (e.g. Satellites). ND
filters and/or coronagraphs may be necessary.

4) Rapid temporal changes due to rotation state, eclipse, occultations, require rapid time
domain measurements.

5) Ultra-wide field imaging necessary for capturing comet comae and for survey work.

6) Heterodyne spectroscopy for measuring atmospheric winds.

7) Spectropolarimetry for dust scattering properties, radiative transfer, and magnetic fields.
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